Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(1): e10817, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38187922

RESUMEN

Carangid fishes are commercially important in fisheries and aquaculture. They are distributed worldwide in both tropical and subtropical marine ecosystems. Their role in food webs is often unclear since their diet cannot be easily identified by traditional gut content analysis. They are suspected to prey on pelagic and benthic species, with clupeiform fishes being important dietary items for some species, though it is unknown whether carangids share food resources or show trophic segregation. Here, we used metabarcoding to overcome traditional challenges of taxonomic approaches to analyze the diet of seven carangid species caught as bycatch in the Brazilian southwest Atlantic sardine fishery. Stomach contents were processed from the following species: Caranx crysos, Caranx latus, Chloroscombrus chrysurus, Hemicaranx amblyrhynchus, Oligoplites saliens, Selene setapinnis, and Trachinotus carolinus. Identified diets were dominated by teleost fishes. The C. latus diet was the most distinct among the seven species, preferentially consuming Engraulis anchoita, but H. amblyrhynchus, O. saliens, and S. setapinnis also showed a trend of predominantly consuming small pelagic fishes. Finally, we found evidence of inter-predation in carangids, especially strong between S. setapinnis and C. crysos, suggesting that consumption of early life stages may result in indirect competition through reduced recruitment in these fishes. These findings provide unprecedented insights into the biodiversity in marine ecosystems, especially the poorly known diet of carangid fishes.

2.
PLoS One ; 18(1): e0280164, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36630423

RESUMEN

Charadriidae comprise 142 valid species and the most recent checklist for the occurrence of this family in Brazil describes 11 species. There are few chromosomal studies in Charadriidae, most of them using a conventional approach. In Charadrius, only five species had their karyotypes described by classical cytogenetics, of which four have 2n = 76 (C. hiaticula, C. dubius, C. vociferou and C. collaris) and one 2n = 78 (C. alexandrinus alexandrinus). Among these species, only Charadrius collaris had the karyotype studied by chromosome painting, which allowed the identification of chromosomal homeologies with the karyotypes of Gallus gallus (GGA) and Burhinus oedicnemus (BOE). According to the literature, studies performed with BAC-FISH using probes from Gallus gallus and Taeniopygia guttata (TGU) libraries have shown interactions between macro and microchromosomes and micro inversions in chromosomes previously considered conserved. Other studies have shown the fusion of several microchromosomes, forming new macrochromosomes, leading to a decrease in the 2n of some species. The present study aims to deepen the chromosomal information in Charadrius collaris through the application of BAC-FISH with probes from the GGA and TGU libraries, in order to investigate possible rearrangements within the apparently conserved karyotype of this species, and thus better clarify the evolutionary history of the species. Charadrius collaris presented 2n = 76 and fundamental number (FN) equal to 94. Comparative mapping of BAC probes from GGA and TGU in Charadrius collaris revealed hybridization signals from 26 macrochromosome probes. Probes from microchromosomes 9 to 28 of GGA were also used and revealed 31 hybridization signals. The karyotype is well conserved, but it contains a paracentric and a pericentric inversion on the CCO1 chromosome, a paracentric and a pericentric inversion on the CCO4 and the separation of GGA4 into CCO4 and CCO8, demonstrating that the BAC-FISH approach allows for greater data resolution. More studies are needed to improve the understanding of chromosomal evolution within the order Charadriiformes and thus clarify whether these characteristics demonstrated here are specific traits for Charadrius collaris or if other species share these characteristics.


Asunto(s)
Charadriiformes , Pájaros Cantores , Animales , Charadriiformes/genética , Evolución Molecular , Cariotipo , Cariotipificación , Pintura Cromosómica , Pájaros Cantores/genética , Pollos/genética
3.
PLoS One ; 17(8): e0272836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947613

RESUMEN

Charadriiformes represent one of the largest orders of birds; members of this order are diverse in morphology, behavior and reproduction, making them an excellent model for studying evolution. It is accepted that the avian putative ancestral karyotype, with 2n = 80, remains conserved for about 100 million years. So far, only a few species of Charadriiformes have been studied using molecular cytogenetics. Here, we performed chromosome painting on metphase chromosomes of two species of Charadriidae, Charadrius collaris and Vanellus chilensis, with whole chromosome paint probes from Burhinus oedicnemus. Charadrius collaris has a diploid number of 76, with both sex chromosomes being submetacentric. In V. chilensi a diploid number of 78 was identified, and the Z chromosome is submetacentric. Chromosome painting suggests that chromosome conservation is a characteristic common to the family Charadriidae. The results allowed a comparative analysis between the three suborders of Charadriiformes and the order Gruiformes using chromosome rearrangements to understand phylogenetic relationships between species and karyotypic evolution. However, the comparative analysis between the Charadriiformes suborders so far has not revealed any shared rearrangements, indicating that each suborder follows an independent evolutionary path, as previously proposed. Likewise, although the orders Charadriiformes and Gruiformes are placed on sister branches, they do not share any signature chromosomal rearrangements.


Asunto(s)
Anfípodos , Charadriiformes , Anfípodos/genética , Animales , Aves/genética , Charadriiformes/genética , Pintura Cromosómica/métodos , Evolución Molecular , Filogenia , Cromosomas Sexuales/genética
4.
BMC Ecol Evol ; 21(1): 34, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653261

RESUMEN

BACKGROUND: Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1-8, and 38 from microchromosomes 9-28. RESULTS: The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. CONCLUSIONS: Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


Asunto(s)
Pintura Cromosómica , Passeriformes , Animales , Cromosomas Artificiales Bacterianos , Evolución Molecular , Cariotipo
5.
BMC Ecol Evol ; 21(1): 8, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33514318

RESUMEN

BACKGROUND: The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. RESULTS: The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. CONCLUSION: Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


Asunto(s)
Charadriiformes , Pintura Cromosómica , Animales , Aves/genética , Charadriiformes/genética , Evolución Molecular , Hibridación Fluorescente in Situ
6.
PLoS One ; 13(8): e0202040, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30138388

RESUMEN

Glyphorynchus spirurus (GSP), also called the Wedge-billed Woodcreeper (Furnariidae) has an extensive distribution in the Americas, including the Atlantic coast of Brazil. Nevertheless, there is no information about its karyotype or genome organization. To contribute to the knowledge of chromosomal evolution in Passeriformes we analysed the karyotype of Glyphorynchus spirurus by classic and molecular cytogenetics methods. We show that Glyphorynchus spirurus has a 2n = 80 karyotype with a fundamental number (FN) of 84, similar to the avian putative ancestral karyotype (PAK). Glyphorynchus spirurus pair 1 was heteromorphic in the Tapajós population whereby the short arms varied in sizes, possibly due to a pericentric inversion, as described in other Furnariidae birds. FISH with the Histone H5 probe revealed a signal in the pericentromeric region of G. spirurus chromosome 5 and rDNA 18S showed interstitial signal in GSP-1. Chromosome painting with Gallus gallus (GGA) macrochromosomes 1-9 probes showed disruption of chromosome syntenies of GGA-1, 2 and 4 by fission in Glyphorynchus spirurus. Our results confirm that the GGA1 centric fission is a synapomorphic character for the phylogenetic branch composed of Strigiformes, Passeriformes, Columbiformes and Falconiformes. On the other hand, the GGA-2 fission is reported here for the first time in Passeriformes. Chromosome painting with BOE whole chromosome probes confirmed these rearrangements in Glyphorynchus spirurus revealed by Gallus gallus 1-9 probes, in addition to enabling the establishment of genome-wide homology map.


Asunto(s)
Pintura Cromosómica , Passeriformes/clasificación , Passeriformes/genética , Animales , Brasil , Mapeo Cromosómico , Sitios Genéticos , Hibridación Fluorescente in Situ , Cariotipo , Cariotipificación
7.
BMC Evol Biol ; 16(1): 119, 2016 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-27260645

RESUMEN

BACKGROUND: The subtribe Vampyressina (sensu Baker et al. 2003) encompasses approximately 43 species and seven genera and is a recent and diversified group of New World leaf-nosed bats specialized in fruit eating. The systematics of this group continues to be debated mainly because of the lack of congruence between topologies generated by molecular and morphological data. We analyzed seven species of all genera of vampyressine bats by multidirectional chromosome painting, using whole-chromosome-painting probes from Carollia brevicauda and Phyllostomus hastatus. Phylogenetic analyses were performed using shared discrete chromosomal segments as characters and the Phylogenetic Analysis Using Parsimony (PAUP) software package, using Desmodontinae as outgroup. We also used the Tree Analysis Using New Technology (TNT) software. RESULTS: The result showed a well-supported phylogeny congruent with molecular topologies regarding the sister taxa relationship of Vampyressa and Mesophylla genera, as well as the close relationship between the genus Chiroderma and Vampyriscus. CONCLUSIONS: Our results supported the hypothesis that all genera of this subtribe have compound sex chromosome systems that originated from an X-autosome translocation, an ancestral condition observed in the Stenodermatinae. Additional rearrangements occurred independently in the genus Vampyressa and Mesophylla yielding the X1X1X2X2/X1X2Y sex chromosome system. This work presents additional data supporting the hypothesis based on molecular studies regarding the polyphyly of the genus Vampyressa and its sister relationship to Mesophylla.


Asunto(s)
Quirópteros/clasificación , Quirópteros/genética , Cromosomas de los Mamíferos/genética , Filogenia , Cromosomas Sexuales/genética , Animales , Pintura Cromosómica , Evolución Molecular , Cariotipificación , Especificidad de la Especie
8.
PLoS One ; 10(3): e0122845, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806812

RESUMEN

The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI), Phyllostomus discolor (PDI) and Tonatia saurophila (TSA), representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps), confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by the exclusion of the genus Lophostoma.


Asunto(s)
Quirópteros/genética , Bandeo Cromosómico , Filogenia , Animales , Evolución Biológica , Brasil , Pintura Cromosómica/métodos , Humanos , Grupos de Población , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...